NOAA Modeling, Analysis, Predictions, and Projections Program webinar 15 January 2013

Excitation of Transient Rossby Wavetrains and their Influence on US Weather

Grant Branstator & Haiyan Teng NCAR

NOAA Modeling, Analysis, Predictions, and Projections Program webinar 15 January 2013

Excitation of Transient Rossby Wavetrains and their Influence on US Weather

Grant Branstator & Haiyan Teng NCAR

- > Example of Influence on US Extremes
- Excitation by Tropical Transient Phenomena

Heat Waves in Nature and CAM3

Composite of 10-90day filtered psi300/precip

OLR daily variance during DJF

NOAA OLR data: Liebmann and Smith (1996)

July - September 1987 OLR

FIG. 6. Time-longitude plot of total OLR (shading, as indicated), filtered ISO, and MRG-TD OLR (contours, solid negative, contour interval 10 W m⁻², zero contour omitted), and filtered Kelvin wave OLR (contoured at -12 W m⁻² only), averaged from 2.5° to 15°N, from 1 Jul to 15 Sep 1987.

Straub & Kiladis (2003)

Linear response to vorticity source Zonal mean January basic state

V300 response to 5C/day heat source moving at 4deg/d

0.3 m/s

120°W

180°

60°W

0°

90°S 0°

60°E

120°E

Dependence of V300 response amplitude on source speed

CCM0/FDT

Standard deviation of v300 using mean v300

CCM0/FDT

Response to moving eq heat source midlatitude ψ300

CCM0/FDT

Stormtrack response to eq heat source

ψ300

$$-\widehat{
abla^{-2}(ec{v}_{\psi}^{\,bp}ullet
ablaarsigma^{bp})}$$

Response to propagating sources (mean v300)

Nature/FDT

Standard deviation of v300 using mean v300

Summary

- Transient Rossby waves influence subseasonal events, including US heat waves
- The structure and amplitude of Rossby waves is affected by the movement of tropical sources
- Midlatitude synoptic eddies are influenced by (slow) transient Rossby waves
- The Fluctuation Dissipation Theorem is a powerful tool for systemic studies of atmospheric response